Second semester 2014-2015 Midsemestral exam Algebraic Number Theory B.Math.(Hons.) IIIrd year Instructor : B.Sury Marks : 8, 8, 8, 10, 12, 14 for Questions 1 to 6 respectively Total marks : 60

Q 1. Let K be an algebraic number field and let O_K denote its ring of integers. Let P be a non-zero prime ideal. Prove that $N(P)^n = N(P^n)$ where N stands for the norm of an ideal.

OR

Define a fractional ideal I in an integral domain A. If I is a fractional ideal such that there exists a fractional ideal J with IJ = A, then prove $J = \{x \in K : xI \subset A\}$ and that I is a finitely generated module.

Q 2. Suppose $f := X^n + aX + b$ is irreducible over \mathbb{Q} for some $a, b \in \mathbb{Q}$. Let $f(\alpha) = 0$. Determine the discriminant of $\{1, \alpha, \dots, \alpha^{n-1}\}$.

OR

If I is a non-zero ideal in O_K , where K is an algebraic number field, prove that $N(I)/|disc(O_K)|$ is a perfect square.

Q 3. Let A be a Dedekind domain. Prove that an ideal I divides an ideal J if and only if $I \supset J$.

OR

If K is an algebraic number field, show that $K = \mathbb{Q}(\alpha)$ where $\alpha \in O_K$. If the minimal polynomial of α has r_1 real roots and $2r_2$ non-real roots, determine, with proof, the value of $\frac{disc(K)}{|disc(K)|}$ in terms of r_1 and r_2 .

Q 4. Let N/K be a Galois extension of number fields. If Q is a prime ideal of O_N lying over a prime P of O_K , look at the decomposition group D of Q over P. If $L = N^D, P_D = Q \cap O_L$, prove that $f(Q/P) = f(Q/P_L)$ and $e(Q/P) = e(Q/P_L)$.

OR

Let L/K be a Galois extension of number fields. For a prime ideals P of O_K , let P_1, \dots, P_g be the primes of O_L lying over P. Prove that g divides [L:K]. Further, show that the decomposition groups $D(P_1/P), \dots, D(P_g/P)$ are mutually conjugate subgroups.

Q 5. If K is a number field, and P is a non-zero prime ideal of O_K such that $P^e \supset (P \cap \mathbb{Z})O_K$, then prove that $P^{e-1} \supset Diff(K)$, where Diff(K) is the different ideal of O_K .

OR

If L/K is an extension of number fields, and P is a non-zero prime ideal of O_K , let $PO_L = P_1^{e_1} \cdots P_g^{e_g}$ with P_i prime ideals of O_L . Prove that the set of prime ideals Q of O_L lying over P coincides with the set $\{P_1, \dots, P_q\}$.

Q 6. Let p be an odd prime and $L = \mathbb{Q}(\zeta_{p^2})$ where ζ_{p^2} is a primitve p^2 -th root of unity. Consider the unique subfield K of L of degree p over \mathbb{Q} . Prove that 2 splits completely in K if and only if $2^{p-1} \equiv 1 \mod p^2$.

OR

Let $p \equiv 1 \mod 3$ be a prime. Let $K \subset \mathbb{Q}(\zeta_p)$ be the unique subfield whose degree is 3 over \mathbb{Q} . Prove that a prime $q \neq p$ splits completely in O_K if and only if q is a cube mod p.

Use q = 2 and p = 43 to give an example of a cubic extension E of \mathbb{Q} for which O_E is not of the form $\mathbb{Z}[\alpha]$.